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Motivation

Component of a larger integrated simulation program at ANL.  
– Neutronics
– Fuel modeling
– Thermal hydraulics
– Balance of plant

The neutronic analysis of complex systems: 
– Gen IV reactors, 
– AFCI transmutation systems, 
– Space nuclear applications. 

Refined analysis for present day reactors.
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Deterministic rather than Stochastic Approach

Very accurate evaluations of detailed reaction rate distributions

Determination of small reactivity effects

Sensitivity and uncertainty analysis

Systematic extrapolation to reference solutions

Application to reactor transient and burnup problems
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One Step Deterministic Approach

Seamless approach to replace present three steps:
– 1. Single pin cells – fine energy group structure
– 2. Fuel assemblies – intermediate energy group structure
– 3. Whole core – coarse energy groups 

Very large number of energy groups: ultimately ~10,000

General geometry capability to offer the same flexibility as Monte Carlo
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The proposed code:  UNIC
(Ultimate Neutronic Investigation Code), 

Multigroup energy discretization 

Three-dimensional finite elements in space

Spherical harmonics, discrete ordinate and/or integral angular discretization

Domain decomposition through incoming and outgoing angular flux 
distributions, allowing second- and first-order Boltzmann equation form 
coupling when needed. 

Initial implementation: spherical harmonics with second-order form. 
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UNIC

Problem domain divided into spatial “nodes” or subdomains. Each 
subdomain corresponding to a processor on a parallel computer. 

Subdomain calculations performed one per processor by sparse matrix 
iterative means, e.g. preconditioned conjugate gradient methods (PETSc)

Domain decomposition method couples iterative subdomain solutions to 
obtain a global solution iteratively, e.g. with red-black or multicolored 
iteration. 
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UNIC

Three dimensional nodes of arbitrary shape must be formulated and 
coded, possibly with curved surfaces.

Possible modification of iteration strategy to reduce processor to 
processor coupling

subdomain 1    subdomain 2
Iteration by group

subdomain 1    subdomain 2
Iteration by subdomain
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UNIC – Current Status

Reformulated the second-order form of the transport equation with 
incoming angular flux boundary conditions.

Implemented second order Pn equations with isotropic scattering in 
Fortran 90 code with object orientated coding structure.

The finite element mesh geometry, element solver, and element 
library incorporated into separate Fortran modules with minimal 
linkages. 

Spherical harmonics module written to handle arbitrary vacuum and 
reflected boundary conditions for unstructured finite element mesh 
geometries. 

Solver routine written for steady state multigroup eigenvalue and/or 
fixed source iterations for one, two, and three dimensional 
unstructured finite element mesh geometries.
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UNIC – Current Status

Inner iteration (linear system of equations) solver implemented 
based on conjugate gradient method with partial Cholesky
decomposition as preconditioner for the spatial components 

Satisfactory results obtained on serial machines for standard simple 
benchmarks for two and three dimensional Cartesian multigroup 
problems

.
Work begun for complex geometry mesh generation using CUBIT.

UNIC will be integrated  in SALOME to address pre- and post-
processing as well of the coupling with other multi-physics modules
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UNIC

For the second order finite element Pn equations we start from:
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UNIC

Using partial currents:
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The subdomain solution algorithm would consist of assuming the incoming 
flux distribution,  , is known, and calculating q from Eq. (3).  Knowing, q, use 
Eq. (1) to calculate , iteratively. With  known, use Eq. (4) to calculate the 
outgoing flux distribution .  .
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UNIC

For the discontinuous finite element Sn equation we have:

and for the outgoing flux distribution
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To summarize the derivation, Eq. (1) is used to solve the finite-element 
spherical harmonic approximation within the subdomain. If the subdomain is 
coupled to others in which the spherical harmonic approximation is also used, 
then Eqs. (3) and (4) are used for the incoming and outgoing flux distributions 
respectively. If the adjoining subdomains are treated with discrete ordinate 
methods, Eqs. (5) and (6) are used for incoming and outgoing flux. 


